The optimally performing Fischer-Tropsch catalyst.
نویسندگان
چکیده
Microkinetics simulations are presented based on DFT-determined elementary reaction steps of the Fischer-Tropsch (FT) reaction. The formation of long-chain hydrocarbons occurs on stepped Ru surfaces with CH as the inserting monomer, whereas planar Ru only produces methane because of slow CO activation. By varying the metal-carbon and metal-oxygen interaction energy, three reactivity regimes are identified with rates being controlled by CO dissociation, chain-growth termination, or water removal. Predicted surface coverages are dominated by CO, C, or O, respectively. Optimum FT performance occurs at the interphase of the regimes of limited CO dissociation and chain-growth termination. Current FT catalysts are suboptimal, as they are limited by CO activation and/or O removal.
منابع مشابه
A review of Fischer-Tropsch synthesis on the cobalt based catalysts
Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...
متن کاملInvestigation of Products Distribution In Fischer-Tropsch Synthesis By Nano-sized Iron-based Catalyst
Nano-sized iron-based catalyst was prepared by the micro-emulsion method. The composition of the final nano-sized iron catalyst, in term of the atomic ratio contains: 100Fe/4Cu/2Ce. Experimental techniques of XRD, BET, TEM and TPR were used to study the phase, structure and morphology of the catalyst. Fischer-Tropsch Synthesis (FTS) reaction test was performed in a fixed bed reactor at pressure...
متن کاملThe Effect of Temperature on Product Distribution over Fe-Cu-K Catalyst in Fischer-Tropsch Synthesis
The iron-based catalyst was prepared by a microemulsion method. The composition of the final nanosized iron catalyst, in terms of the atomic ratio, contains 100Fe/4Cu/2K. The experimental techniques of XRD, BET, TEM, and TPR were used to study the phase, structure, and morphology of the catalyst. Fischer-Tropsch synthesis (FTS) reaction test was performed in a fixed bed reactor under pressure o...
متن کاملSynthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction
Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...
متن کاملKinetic Study of Fischer Tropsch Synthesis over co Precipitated Iron-Cerium Catalyst
The kinetic of Fischer-Tropsch synthesis over a co-precipitated Fe-Ce catalyst was investigated in a fixed bed micro reactor. Experimental conditions were varied as follow: reaction pressure 1-15bar, H¬¬¬2/CO feed ratio of 1-3 and space velocity of 3600-5400 h-1 at the temperature range of 270-310°C. 4 models according to the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate equation were der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 53 47 شماره
صفحات -
تاریخ انتشار 2014